1. Homepage
  2. Exam
  3. [2019] STAT 153 Introduction to Time Series - Midterm Exam - Q5 Autocorrelation

[2019] STAT 153 Introduction to Time Series - Midterm Exam - Q5 Autocorrelation

This question has been solved
Engage in a Conversation

5. For each statement, indicate whether it is true or false and give a short explanation. CourseNana.COM


CourseNana.COM

You only get points when both, True/False and the explanation, are correct. CourseNana.COM

(a)  For the sample autocorrelations of n = 1,000 i.i.d. white noise random variables at lags h = 1, . . . , 100, you expect on average 5 of them to be larger than 1.96 in absolute value. CourseNana.COM

[ ]True [ ]False Explanation: CourseNana.COM

(b)  The sample autocorrelations of an AR(1) process with i.i.d. white noise are (for large sample size) approximately i.i.d.. CourseNana.COM

[ ]True [ ]False Explanation: CourseNana.COM

(c)  Applying a linear (time invariant) filter to a stationary process results again in a stationary process. CourseNana.COM

[ ]True [ ]False Explanation: CourseNana.COM

(d)  When you want to fit a seasonal parametric function of the form st = a0 + ?kf=1 (af cos(2πft/d)+bf sin(2πft/d)) with parameters a0,a1,...,ak,b1,...,bk it can be helpful to chose k > d/2. CourseNana.COM

[ ]True [ ]False Explanation: CourseNana.COM

(e)  A time series {Xt} where Xt follows a Gaussian distribution for each t is a Gaussian process. [ ]True [ ]False
Explanation:
CourseNana.COM

(f)  Whether a time series is invertible or not is fully determined by its finite dimensional distributions. CourseNana.COM

[ ]True [ ]False Explanation: CourseNana.COM

(g) Whether a time series is strongly stationary or not is fully determined by its mean and covariance function. CourseNana.COM

[ ]True [ ]False Explanation: CourseNana.COM

(h)  Whether a Gaussian process is strongly stationary or not is fully determined by its mean and covariance function. CourseNana.COM

[ True [ ]False Explanation:  (8 Points) CourseNana.COM

  CourseNana.COM

Get the Solution to This Question

WeChat (微信) WeChat (微信)
Whatsapp WhatsApp
STAT 153代写,Introduction to Time Series代写,Exam代写,UC Berkeley代写,STAT 153代编,Introduction to Time Series代编,Exam代编,UC Berkeley代编,STAT 153代考,Introduction to Time Series代考,Exam代考,UC Berkeley代考,STAT 153help,Introduction to Time Serieshelp,Examhelp,UC Berkeleyhelp,STAT 153作业代写,Introduction to Time Series作业代写,Exam作业代写,UC Berkeley作业代写,STAT 153编程代写,Introduction to Time Series编程代写,Exam编程代写,UC Berkeley编程代写,STAT 153programming help,Introduction to Time Seriesprogramming help,Examprogramming help,UC Berkeleyprogramming help,STAT 153assignment help,Introduction to Time Seriesassignment help,Examassignment help,UC Berkeleyassignment help,STAT 153solution,Introduction to Time Seriessolution,Examsolution,UC Berkeleysolution,